Graph for Pinch Point Analysis

Pinch Point Analysis

Pinch Point Analysis is a systematic process design methodology consisting of a number of concepts and techniques that ensure an optimal use of energy. The Pinch is characterized by a minimum temperature difference between hot and cold streams and designates the location where the heat recovery is the most constraint.

The fundamental computational tool is the Problem Table algorithm. This tool allows the identifications of the Pinch, as well as of targets for hot and cold utilities.

The net heat flow across Pinch is zero. Consequently, the system can be split into two stand-alone subsystems, above and below the Pinch. Above the Pinch there is need only for hot utility, while below the Pinch only cold utility is necessary. For given ΔTmin the hot and cold utility consumption identified so far becomes Minimum Energy Requirements (MER). No design can achieve MER if there is a cross-pinch heat transfer.

The partition of the original problem in subsystems may introduce redundancy in the number of heat exchangers. When the capital cost is high, it might be necessary to remove the Pinch constraint in order to reduce the number of units. The operation will be paid by supplementary energetic consumption, which has to be optimized against the reduction in capital costs.

The result is that heat recovery problem becomes an optimization of both energy and capital costs, constraint by a minimum temperature approach in designing the heat exchangers. Stream selection and data extraction are essential in Pinch Analysis for effective heat integration.

The key computational assumption in Pinch Point Analysis is constant CP on the interval where the streams are matched. If not, stream segmentation is necessary

The counter-current heat flow of the streams selected for integration may be represented by means of Composite Curves (CC). Another diagram, Grand Composite Curve (GCC) allows the visualization of the excess heat between hot and cold streams against temperature intervals. This feature helps the selection and placement of utilities, as well as the identification of the potential process/process matches.

The synthesis of a Heat Exchanger Network consists of three main activities:

  • Set a reference basis for energy integration, namely:

-Minimum Energy Requirements (MER)

-Utility selection and their placement

-Number of units and heat exchange area

-Cost of energy and hardware at MER

  • Synthesis of heat exchanger network (HEN) for minimum energy requirements and maximum heat recovery. Determine matches in subsystems and generate alternatives.
  • Network optimization. Reduce redundant elements, as small heat exchangers, or small split streams. Find the trade-off between utility consumption, heat exchange area and number of units. Consider constraints

The improvement of design can be realized by Appropriate Placement and Plus/Minus principle. Appropriate Placement defines the optimal location of individual units against the Pinch. It applies to heat engines, heat pumps, distillation columns, evaporators, furnaces, and to any other unit operation that can be represented in terms of heat sources and sinks.

The Plus/Minus principle helps to detect major flow sheet modifications that can improve significantly the energy recovery. Navigating between Appropriate Placement, Plus/Minus Principle and Targeting allows the designer to formulate near-optimum targets for the heat exchanger network, without ever sizing heat exchangers.

Pinch Point principle has been extended to operations involving mass exchange. Saving water can be treated systematically by Water Pinch methodology. Similarly, Hydrogen Pinch can efficiently handle the inventory of hydrogen in refineries. Other applications of industrial interest have been developed in the field of waste and emissions minimization. The systematic methods in handling the integration of mass-exchange operations are still in development. In this area the methods based on optimization techniques are very promising.

Maximize your CIP/SIP results

Tips and tricks for getting the most out of Clean in Place/Sterilization in Place results

Regardless of whether or not you are runninga manufacturing facility, a laboratory, or any other kind of operation that takes advantage of closed systems, you’re going to want to be certain that your operation is perfectly clean and completely sterilized on a regular basis.

This is especially true of those in the beverage, food, or pharmaceutical industry, where taking advantage of the best Clean in Place/Sterilization in Place services are absolutely mission critical to providing consistent and reliable results that pass industry specifications and requirements.

In an effort to help you better choose the right CIP/SIP professionals to deliver you the kind of results you’re counting on, here are just a handful of things you’ll want to think about before you contract any services at all.

Make certain that you’re always working with qualified professionals

The very first thing that you need to make sure you are doing when you are working with these kinds of professionals is that they are exactly that – professionals.

There are quite a few generalized cleaning operations out there that possess some of the tools and technology necessary to provide CIP/SIP results but not the experience, the specialized knowledge, or the wisdom to deploy these solutions appropriately in all circumstances.

No, instead, you’re only going to want to work with those that have the necessary qualifications, the necessary certifications, and the kind of experience – usually years of experience – that give you the confidence to know that the jobs going to get done the right way the first time around.

This is especially important when you are in an industry where contamination in a closed system can have dramatic and drastic consequences.

Only take advantage of services designed for your setup and your technology

Secondly, you’re going to want to be 100% certain that the CIP /SIP you have decided to work with are experienced in delivering the kind of clean in place and sterilization in place results you’re looking for with your particular technology setup.

Though almost every industrial setup is going to be unique in itself, the truth is most solutions have some kind of aseptic production technology, technology that needs to be cleaned without any exposure to outside contaminants whatsoever.

If you’re producing sterile products that must be packaged in sterile containers, CIP/SIP services are an absolute must!

The best CIP /SIP professionals are going to use isolators that make sure no air or oxygen makes it into a closed system, removing all potential for contamination almost entirely. Steam, hydrogen peroxide, and a handful of other specialized solutions may be deployed depending upon the kind of cleaning that you’re looking for and the manufacturing technology you’re using in your closed system.

Review the CIP/SIP experts you’ve worked with

Lastly, you’ll want to make sure that you can find at least a handful of appropriate outlets that give you the chance to review the CIP /SIP that you have chosen to work with.

This “inside information” straight from the mouths of people that have actually worked with CIP /SIP contractors and services will help business owners, management, and leadership choose the right experts going forward, and you’ll be contributing immensely to your industry and every other that needs to leverage these services later down the line.

Be honest and straightforward in your reviews so that people know exactly who to choose to work with moving forward.

 

Creating a Project Safety Plan

Any project that is within the fields of engineering or construction will come a high level of risk. It is possible to keep this risk low and prevent any serious accident occurring, however in order to do this you need to ensure that the safety plan you put in place is up to scratch. You need to tailor everything to your specific project and have a constant line of communication with team members regarding safety.

Read More

Risk Management

Risk Assessment

Many people interchange hazard and risk on a daily basis. Unfortunately, they are actually two different concepts. The difference may not be as much as an issue for the everyday conversation, but when it comes to risk assessment and control, it is extremely important. Below you will gain a better understanding of the difference between the two and why the difference is so important.

The basic difference is that a hazard is something that will cause harm, while a risk is the possibility that a hazard may cause harm. Although they are used synonymously, knowing the difference could save your life or allow you to enjoy it more thoroughly.

In essence, a hazard will not be risky unless you are exposed to enough of it that it actually causes harm; the risk itself may actually be zero or it may be greatly reduced when precautions are taken around that hazard.

The simple relationship between the two is that you have to have exposure to a hazard to experience a risk. Thus, it is vital that you know the level of exposure you are going to have to the hazard to better understand how much risk is actually involved.

Risk Assessment Methods

There are a variety of risk assessment methods for the various categories. When it comes to the difference between hazard and risk, several categories may use different measurements and methods. As an example, the way risk is assessed in human health may be different from the risk assessment for project management.

Why Use a Risk Assessment Method?

A risk assessment is a tool used to determine the potential results from any given hazard. The assessment uses a combination of situational information, previous knowledge about the process, and judgments made from the knowledge and information.Since the risk is the potential damage done by a hazard, there are certain outcomes that any good risk assessment needs to have.

There are six main outcomes that are needed to have an effective risk assessment. By the end of the assessment you should know:

  • Any situations that may be hazardous
  • Which method is appropriate to use when determining the likelihood the hazard will occur
  • Alternative solutions for reducing and eliminating the risk or any negative consequences the may occur
  • More information for making a decision about risk management
  • Estimation for the uncertainly of the analysis

Steps of a Risk Assessment

Step 1: Discover the hazards. You can do this by using several different strategies such as walking around the area, navigating through portfolios and databases, or asking people who are around.

Step 2: Determine who may be harmed and how they may be harmed. After discovering the hazards you will need to determine who may be harmed by them, as well as how they may be harmed.

Step 3: Analyze the amount of risk and how you can control them. You may find that you can simply remove the hazard. If not, then decide which control method will be best to use to reduce the amount of risk.

Step 4: Document your assessment and results. It is important that you document what you find. This is done for legal reasons to protect you, the location, and any possible persons that may be involved. You also want to be sure that you write down your next plan of action – what control measures you are going to take.

Step 5: Regularly review and update your assessment. It is great to think that once the hazard is gone that all risks of harm are gone. This is not true. In some cases the hazard may return and in other new hazards may develop. Regularly checking will keep you and everyone around safe.

Risk Control Methods

Knowing the difference between hazard and risk leads to risk control. Risk is controlled when your business takes actions that help eliminate safety risks as much as you are able to do so. If it is not possible to completely eliminate the risk, controlling your risk may mean that you are taking actions to minimize the risks and hazards within the work environment.

There are four main methods that can be used to eliminate or minimize these risks – avoidance, loss prevention & reduction, transfer, and acceptance.

1. Avoidance

This is by far the easiest way to control any risk. When you decide to use this method, you find all possibly hazardous activities and stop them. It is important that you remember when choosing this option you may also miss out on other opportunities and gains.

2. Loss Prevention & Reduction

Using this method you will reduce the frequency and severity of a specific loss. You may decide to increase security measures or improve maintenance, or you may create rules that require your employees to wear certain safety gear.

3. Transfer

When you choose this method you will create a contract with a third party to deal with that risk. A couple great examples would be hiring a security company to improve security or hiring a cleaning crew to ensure health hazards are cleaned up.

4. Acceptance

This last method is not to be taken lightly. When you feel that transfer or loss prevention & reduction methods are not necessary or are too excessive, this may be the option for you. However, it is important that you understand this could possibly be dangerous for your company. Undergoing too many losses or enduring too many negative consequences can quickly sink your business.