What is a Validation Master Plan?

A Validation Master Plan or a VMP is a document that outlines the principles and defines which processes and equipment need to be validated and the order of priority in which the same will be done. Validation of products, processes and facilities is an important part of a company’s Quality Management System(QMS). While the FDA doesn’t necessarily require a Validation Master Plan, it is often included in quality engineering services.A VMP should have logical reasoning for including or excluding every system associated with a validation project based on a risk assessment.
Pharmaceutical, biotechnology and medical device manufacturers are the key sectors that require a VMP. It is a key document in the GMP (Good manufacturing practice) regulated pharmaceutical industry as it drives a structured approach to validation projects.
The VMP is the foundation for the validation program and should include process validation, facility and utility qualification and validation, equipment qualification, cleaning and computer validation.The VMP is crucial from a quality and regulatory-compliance standpoint. At times, FDA inspectors may request documentation outlining an organization’s process and equipment validation plan. Thus, VMPs may help companies overcome challenges.

VMPs should include details of:

  • All prospective, concurrent, retrospective validation and revalidation activities
  • Time, location, priority and order of validation activities
  • A statement describing the validation policy of the company
  • An overview of the organization’s scope of operations, describing the facilities, products and processes
  • Facility management/personnel who have agreed upon the plan
  • Details or copies of any corresponding validation plans, existing SOPs, relevant policy documents and validation reports/protocols, etc.
  • Persons who are responsible and provide approval for SOPs, protocols and the VMP, as well as any review and reference tracking systems
  • References to or appendices detailing any plans for validation training programs.

Developing and implementing a VMP offers numerous benefits to manufacturers. A VMP is documented evidence that the manufacturer follows a well-defined strategy and has their validation process under control. This can be essentially useful during a quality system inspection. The VMP can also enhance business efficiency by preventing product or process failures and improving productivity.
VMP also leads to simplification of the validation process. VMP defines validation strategy and requirements, risk management and implementation. Thus, making the validation process simpler.
Operational excellence also benefits from VMP. A holistic approach helps define how the process will be integrated, how risk management will be applied and how validation will be handled for continuous improvement. It also defines how validation will be performed throughout the project life cycle and through regulatory submissions and other phased approval.
While the need of a VMP is not specifically required, it has become common practice in the pharmaceutical industry. The overall objective of a VMP is to ensure that quality requirements for processes and equipment are consistently met. When applied holistically, a VMP will simplify and standardize validation processes, facilitate continuous improvement and operational excellence, ensure smooth integration into quality systems, support design control and the device life cycle, and improve the overall cost of quality.
In conclusion, Validation is an excellent way to minimize risk and maximize production efficiency and quality. The extra cost incurred for validation is directly proportional to the level of risk aversion. Thus, a suitable validation program devised on pharmaceutical manufacturing standards would help build stability and efficiency.

Validation

Validation Protocols for Pharmaceutical Industries

For pharmaceutical industries, product quality is paramount. Minor inconsistencies can lead to major disasters. To maintain quality assurance, consistency and risk assessment, industries conduct a validation of processes and equipment. A validation is a documented evidence of the consistency of processes and equipment. Design Qualification (DQ), Installation Qualification (IQ), Operational Qualification (OQ) and Performance Qualification (PQ) are an essential part of quality assurance through equipment validation.

DQ IQ OQ PQ protocols are ways of establishing that the equipment which is being used or installed will offer a high degree of quality assurance, so that manufacturing processes will consistently produce products that meet predetermined quality requirements.

Design Qualification (DQ)

Design qualification is a verification process on the design to meet particular requirements relating to the quality of manufacturing and pharmaceutical practices. It is important to take these procedures into consideration and follow them keenly. Along with Process Validation, pharmaceutical manufacturers must conduct Design Qualification during the initial stages. For DQ to be considered whole, other qualifications i.e. IQ, OQ and PQ need to be implemented on each instrument and the system as a whole.

DQ allows manufacturers to make corrections and changes reducing costs and avoiding delays. Changes made to a DQ should be documented which makes DQ on the finalized design easier and less prone to errors. By the use of a design validation protocol it is possible to determine whether the equipment or product will deliver its full functionality and conform to the requirements of the validation master plan.

Installation Qualification (IQ)

Any new equipment is first validated to check if it is capable of producing the desired results through Design Qualification, but its performance in a real-world scenario depends on the installation procedure that follows. Installation Qualification (IQ) verifies that the instrument or equipment being qualified, as well as its sub-systems and any ancillary systems, have been delivered, installed and configured in accordance with the manufacturer’s specifications or installation checklist. All procedures to do with maintenance, cleaning and calibration are drawn at the installation stage. It also details a list of all the continued Good Manufacturing Procedures (cGMP) requirements that are applicable in the installation qualification.

Conformance with cGMP’s requires, that whatever approach is used, it is fully documented in the individual Validation Plan. The IQ should not start with the Factory Acceptance Testing (FAT) or Commissioning tasks, but it should start before these tasks are completed; enabling the validation team to witness and document the final FAT and commissioning testing. The integration of these activities greatly reduces the costly and time consuming replication of unnecessary retesting.

These requirements must all be satisfied before the IQ can be completed and the qualification process is allowed to progress to the execution of the OQ.

Operational Qualification (OQ)

Operational Qualification is an essential process during the development of equipment required in the pharmaceutical industry. OQ is a series of tests which of tests which ensure the equipment and its sub-systems will operate within their specified limits consistently and dependably. Equipment may also be tested during OQ for qualities such as using an expected and acceptable amount of power or maintaining a certain temperature for a predetermined period of time. OQ follows a specific procedure to maintain thoroughness of the tests and accuracy of the results. The protocol must be detailed and easily replicated so that equipment can be tested multiple times using different testers. This ensures that the results are reliable and do not vary from tester to tester. OQ is an important step to develop safe and effective equipment.

Performance Qualification (PQ)

PQ is the final step in qualification processes for equipment, and this step involves verifying and documenting that the equipment is working reproducibly within a specified working range. Rather than testing each instrument individually, they are all tested together as part of a partial or overall process. Before the qualification begins, a detailed test plan is created, based on the process description.

Process Performance Qualification (PPQ) protocol is a vital part of process validation and qualification, which is used to ensure ongoing product quality by documenting performance over a period of time for a certain process.

Equipment qualification through DQ IQ OQ PQ practices is a part of Good Manufacturing Practice (GMP), through which manufacturers and laboratories can ensure that their equipment delivers consistent quality. It reduces the margin for errors, so the product quality can be maintained within industry standards or regulatory authority requirements. When qualification of equipment is not needed very frequently, performing it in-house might not be feasible, so smaller laboratories might benefit from scheduling external equipment validation services on a regular basis instead.